114 research outputs found

    Competitive-Ratio Approximation Schemes for Minimizing the Makespan in the Online-List Model

    Full text link
    We consider online scheduling on multiple machines for jobs arriving one-by-one with the objective of minimizing the makespan. For any number of identical parallel or uniformly related machines, we provide a competitive-ratio approximation scheme that computes an online algorithm whose competitive ratio is arbitrarily close to the best possible competitive ratio. We also determine this value up to any desired accuracy. This is the first application of competitive-ratio approximation schemes in the online-list model. The result proves the applicability of the concept in different online models. We expect that it fosters further research on other online problems

    Approximation Results for Preemptive Stochastic Online Scheduling

    Get PDF
    We present first constant performance guarantees for preemptive stochastic scheduling to minimize the sum of weighted completion times. For scheduling jobs with release dates on identical parallel machines we derive policies with a guaranteed performance ratio of 2 which matches the currently best known result for the corresponding deterministic online problem. Our policies apply to the recently introduced stochastic online scheduling model inwhich jobs arrive online over time. In contrast to the previously considered nonpreemptivesetting, our preemptive policies extensively utilize information on processing time distributions other than the first (and second) moments. In order to derive our results we introduce a new nontrivial lower bound on the expected value of an unknown optimal policy that we derive from an optimal policy for the basic problem on a single machine without release dates. This problem is known to be solved optimally by a Gittins index priority rule. This priority index also inspires the design of our policies.computer science applications;

    Online Minimum Cost Matching with Recourse on the Line

    Get PDF
    In online minimum cost matching on the line, n requests appear one by one and have to be matched immediately and irrevocably to a given set of servers, all on the real line. The goal is to minimize the sum of distances from the requests to their respective servers. Despite all research efforts, it remains an intriguing open question whether there exists an O(1)-competitive algorithm. The best known online algorithm by Raghvendra [S. Raghvendra, 2018] achieves a competitive factor of ?(log n). This result matches a lower bound of ?(log n) [A. Antoniadis et al., 2018] that holds for a quite large class of online algorithms, including all deterministic algorithms in the literature. In this work, we approach the problem in a recourse model where we allow to revoke online decisions to some extent, i.e., we allow to reassign previously matched edges. We show an O(1)-competitive algorithm for online matching on the line with amortized recourse of O(log n). This is the first non-trivial result for min-cost bipartite matching with recourse. For so-called alternating instances, with no more than one request between two servers, we obtain a near-optimal result. We give a (1+?)-competitive algorithm that reassigns any request at most O(?^{-1.001}) times. This special case is interesting as the aforementioned quite general lower bound ?(log n) holds for such instances

    New Results on Online Resource Minimization

    Full text link
    We consider the online resource minimization problem in which jobs with hard deadlines arrive online over time at their release dates. The task is to determine a feasible schedule on a minimum number of machines. We rigorously study this problem and derive various algorithms with small constant competitive ratios for interesting restricted problem variants. As the most important special case, we consider scheduling jobs with agreeable deadlines. We provide the first constant ratio competitive algorithm for the non-preemptive setting, which is of particular interest with regard to the known strong lower bound of n for the general problem. For the preemptive setting, we show that the natural algorithm LLF achieves a constant ratio for agreeable jobs, while for general jobs it has a lower bound of Omega(n^(1/3)). We also give an O(log n)-competitive algorithm for the general preemptive problem, which improves upon the known O(p_max/p_min)-competitive algorithm. Our algorithm maintains a dynamic partition of the job set into loose and tight jobs and schedules each (temporal) subset individually on separate sets of machines. The key is a characterization of how the decrease in the relative laxity of jobs influences the optimum number of machines. To achieve this we derive a compact expression of the optimum value, which might be of independent interest. We complement the general algorithmic result by showing lower bounds that rule out that other known algorithms may yield a similar performance guarantee

    Scheduling with Explorable Uncertainty

    Get PDF
    We introduce a novel model for scheduling with explorable uncertainty. In this model, the processing time of a job can potentially be reduced (by an a priori unknown amount) by testing the job. Testing a job j takes one unit of time and may reduce its processing time from the given upper limit p\u27_j (which is the time taken to execute the job if it is not tested) to any value between 0 and p\u27_j. This setting is motivated e.g. by applications where a code optimizer can be run on a job before executing it. We consider the objective of minimizing the sum of completion times on a single machine. All jobs are available from the start, but the reduction in their processing times as a result of testing is unknown, making this an online problem that is amenable to competitive analysis. The need to balance the time spent on tests and the time spent on job executions adds a novel flavor to the problem. We give the first and nearly tight lower and upper bounds on the competitive ratio for deterministic and randomized algorithms. We also show that minimizing the makespan is a considerably easier problem for which we give optimal deterministic and randomized online algorithms
    corecore